range was 4 kbar. The results, shown in Figure 1, may be summarized by the statement that the activation volume for the concerted shift (I) equals  $-30 \pm 5 \text{ cm}^3/\text{mol}$  and that for the stepwise reaction (II) is  $\pm 10 \pm 2 \text{ cm}^3/\text{mol}$ . These observations clearly confirm that this activation parameter provides a criterion for concertedness in signatropic shifts as well as for cycloadditions.

Acknowledgment. The National Science Foundation generously supported this investigation.

#### **References and Notes**

- (1) Paper 52 in the Series "Kinetics of Reactions in Solutions under Pressure
- (2) Summarized in W. J. le Noble, Prog. Phys. Org. Chem., 5, 207 (1967); T. Asano and W. J. le Noble, *Chem. Rev.*, **78,** 407 (1978). (3)
- C. Walling and J. Peisach, J. Am. Chem. Soc., 80, 5819 (1958)
- W. J. le Noble and B. A. Ojosipe, *J. Am. Chem. Soc.*, 97, 5939 (1975).
  K. F. Fleischmann and H. Kelm, *Tetrahedron Lett.*, 3773 (1973).
  W. J. le (5) Noble and R. Mukhtar, J. Am. Chem. Soc., 96, 6191 (1974); 97, 5938 (1975).
- (6)
- K. R. Brower, *J. Am. Chem. Soc.*, **83**, 4370 (1961). C. Walling and M. Naiman, *J. Am. Chem. Soc.*, **84**, 2628 (1962). The rearrangement of allylic azides is a closely related case: W. J. le Noble, (8)
- J. Phys. Chem., 67, 2451 (1963). (Q)
- K. R. Brower and T. L. Wu, J. Am. Chem. Soc., 92, 5303 (1970).
- (10) R. C. Neuman and M. J. Amrich, J. Am. Chem. Soc., 94, 2730 (1972).
  (11) C. A. Stewart, J. Am. Chem. Soc., 94, 635 (1972).
- (12) F. J. Dinan and H. Tieckelman, J. Org. Chem., 29, 1650 (1964). J. E. Lister and H. Tieckelman, J. Am. Chem. Soc., 90, 4361 (1969). U. Schöllkopf and I. Hoppe, Tetrahedron Lett., 4527 (1970); Justus Liebigs Ann. Chem., 765. 153 (1971).

W. J. le Noble,\* M. Rajaona Daka

Department of Chemistry, State University of New York Stony Brook, New York 11794

Received March 14, 1978

## Multiple Metal-Carbon Bonds. 10.<sup>1</sup> Thermally Stable Tantalum Alkylidyne Complexes and the Crystal Structure of $Ta(\eta^5-C_5Me_5)(CPh)(PMe_3)_2Cl$

Sir

Alkylidene complexes of niobium and tantalum have been prepared by deprotonating (formally<sup>2</sup> or actually<sup>3</sup>) the  $\alpha$ carbon atom of an alkyl ligand in a M<sup>5+</sup> complex. We now can prepare thermally stable Ta neopentylidyne<sup>4,5d</sup> complexes similarly by deprotonating a cationic neopentylidene complex. Both neopentylidyne and benzylidyne complexes can be prepared more cleanly by accelerating abstraction of the alkylidene  $\alpha$ -hydrogen atom by the alkyl ligand in neutral alkyl/ alkylidene complexes with trimethylphosphine.

Addition of 1 mol of PMe<sub>3</sub> to red  $TaCp(CHCMe_3)Cl_2^7$  in toluene yields the sparingly soluble yellow adduct, TaCp(CHCMe<sub>3</sub>)Cl<sub>2</sub>(PMe<sub>3</sub>) (1).<sup>8a</sup> In THF in the presence of 3-5 additional mol of PMe<sub>3</sub>, 1 reacts with  $Ph_3P=CH_2$  to give [Ph<sub>3</sub>PCH<sub>3</sub>]<sup>+</sup>Cl<sup>-</sup> (~90% yield). Removing the THF and extracting the residue with pentane gives moderately soluble, pale yellow, crystalline 2 in 60% crude yield (30% yield of pure, recrystallized 2; eq 1, path A). Calcd for TaC<sub>16</sub>H<sub>32</sub>P<sub>2</sub>Cl: C,



38.23; H, 6.41; Cl, 7.05. Found: C, 38.09; H, 6.26; Cl, 6.99. We postulate that [TaCp(CHCMe<sub>3</sub>)Cl(PMe<sub>3</sub>)<sub>2</sub>]+Cl<sup>-</sup> is an in-



Figure 1. The 22.63-MHz  ${}^{13}C{}^{1}H{}$  NMR spectrum of Ta( $\eta^{5}-C_{5}H_{5}$ )- $(CCMe_3)(PM_3)_2Cl(2).$ 

termediate from which a proton is removed by Ph<sub>3</sub>P=CH<sub>2</sub> to give 2 (cf. the reaction of  $TaCp_2(CHCMe_3)Cl$  with PMe<sub>3</sub> to give<sup>1</sup>  $[TaCp_2(CHCMe_3)(PMe_3)]$ +Cl<sup>-</sup> and the deprotonation of  $[TaCp_2Me_2]^+BF_4^-$  by Me<sub>3</sub>P=CH<sub>2</sub> to give TaCp<sub>2</sub>(CH<sub>2</sub>)- $(CH_3)^3$ ). Yellow 2 is indefinitely stable at 25 °C in solution. In the solid state it reacts only slowly with oxygen but is more sensitive to water or other protic solvents. It sublimes with little decomposition at 100 °C and 1  $\mu$  and is a monomer in cyclohexane (mol wt, 527 cryoscopically; theory, 503).

The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **2** is shown in Figure 1. The most important feature is the 1:2:1 triplet at 348 ppm due to the neopentylidyne  $\alpha$ -carbon atom coupled to two equivalent phosphorus nuclei. Some coupling of the neopentyl methyl carbon atoms  $(C^2)$  to phosphorus can also be seen. In the gated decoupled spectrum the resonances for C<sup>5</sup> and C<sup>3</sup> are broad (owing to long-range CH coupling), but every other peak is split into the appropriate multiplet. The neopentylidyne  $C^{\alpha}$ resonance is  $\sim 100$  ppm farther downfield than the neopentylidene C<sup> $\alpha$ </sup> resonance in TaCp(CHCMe<sub>3</sub>)Cl<sub>2</sub><sup>7</sup> and related molecules<sup>1,2</sup> and is in the same region where the alkylidyne  $\alpha$ -carbon resonances in group 6 complexes such as Br-(CO)<sub>4</sub>W≡CPh are found.<sup>5</sup> The <sup>1</sup>H NMR spectrum<sup>8b</sup> also suggests that the phosphine ligands are equivalent.

The reaction of  $LiCH_2CMe_3$  with  $TaCp(CHCMe_3)Cl_2$  at 25 °C in pentane gives  $TaCp(CHCMe_3)(CH_2CMe_3)Cl$  (3) in 85-90% isolated yield as a pentane-soluble, thermally stable, sublimable, orange oil.<sup>9</sup> On adding PMe<sub>3</sub> to a pentane solution of 3 at 25 °C 1 mol of neopentane evolves immediately and 2 forms quantitatively (eq 1, path B); no other products can be seen by <sup>1</sup>H NMR. We believe that PMe<sub>3</sub> coordinates to 3 to give a pseudo-five-coordinate complex in which abstraction of the neopentylidene ligand's  $\alpha$ -hydrogen atom by the neopentyl ligand is more favorable than it is in pseudotetrahedral **3.** It is also possible that abstraction of an  $\alpha$ -hydrogen atom from the *neopentyl* by the *neopentylidene* ligand is similarly "accelerated", but, since this reaction is degenerate, we cannot tell which  $\alpha$ -abstraction process is faster.

The reaction of thermally unstable  $TaCp(CH_2Ph)_3Cl^{10}$  in benzene with 2 mol of PMe3 gives less soluble, red  $TaCp(CH_2Ph)_3Cl(PMe_3)$  (by <sup>1</sup>H NMR) which dissolves completely on heating to 60 °C for 2 h to give an orange solution which contains 2 mol of toluene (by <sup>1</sup>H NMR and GLC) and 4 (eq 2). We do not yet know whether pseudo-six-coordi-



nate TaCp(CH<sub>2</sub>Ph)<sub>3</sub>Cl(PMe<sub>3</sub>) decomposes more readily than pseudo-five-coordinate TaCp(CH<sub>2</sub>Ph)<sub>3</sub>Cl or whether  $TaCp(CHPh)(CH_2Ph)ClL_x$  (x = 0 or 1) is an observable intermediate (cf.  $Ta(\eta^5-C_5Me_5)(CHPh)(CH_2Ph)Cl$  below). The <sup>13</sup>C spectrum of **4** is similar to that of **2**;<sup>11</sup> the benzylidyne  $\alpha$ -carbon resonance occurs at 334 ppm with  $J_{CP} = 21 \pm 1$ Hz.

Both  $Ta(\eta^5-C_5Me_5)(CHCMe_3)(CH_2CMe_3)Cl^{12a}$  and  $Ta(\eta^5-C_5Me_5)(CHPh)(CH_2Ph)Cl^{12b}$  react instantly with PMe<sub>3</sub> to give  $Ta(\eta^5-C_5Me_5)(CCMe_3)(PMe_3)_2Cl$  (5a) and  $Ta(\eta^5-C_5Me_5)(CPh)(PMe_3)_2Cl$  (5b) quantitatively at 25 °C. The <sup>13</sup>C NMR spectrum of each is similar to that of the corresponding  $\eta^5$ -C<sub>5</sub>H<sub>5</sub> analogue above (for 5a  $\delta_{C^{\alpha}}$  354 (J<sub>CP</sub> =  $19 \pm 1$  Hz); for **5b**  $\delta_{C^{\alpha}}$  345 ( $J_{CP} = 20 \pm 1$  Hz)). **5a** and **5b** are more soluble in pentane, but otherwise their physical properties are very similar to those of 2 and 4, respectively. They too are monomers (mol wt for 5b, 576 in cyclohexane (average of 565 and 586); theory, 593).

Bridging alkylidyne ligands are found in the complexes,<sup>13</sup>  $[M(CH_2SiMe_3)_2(CSiMe_3)]_2$  (M = Nb or Ta), in which M is in the same formal oxidation state as Ta in 2, 4, or 5, but the valence electron count of hypothetical monomeric  $M(CH_2SiMe_3)_2(CSiMe_3)$  is 10 (and the complex is not crowded) while the valence electron count in 2, 4, and 5 is 18 and they are relatively crowded molecules. Since the formal valence electron count about each metal does not change on dimerization through the alkylidyne ligand, steric hindrance may be the primary reason why 2, 4, and 5 do not dimerize.

We expect the alkylidyne  $\alpha$ -carbon atom to be nucleophilic since the alkylidyne ligand is formed in a manner similar to that of an alkylidene ligand, and alkylidene ligands are nucleophilic in  $TaCp(CHCMe_3)Cl_2$  and all other complexes with the metal in that formal oxidation state (3 + or 5 + depending on one's)point of view).<sup>1-3</sup>

The molecular geometry of  $Ta(\eta^5-C_5Me_5)(CPh)(PMe_3)_2Cl$ (5b) has been determined unequivocally by means of a single-crystal X-ray diffraction study. It crystallizes in the centrosymmetric monoclinic space group  $P2_1/c$  with a = 10.5129(12) Å, b = 13.8147 (16) Å, c = 18.1793 (21) Å,  $\beta = 102.945$ (8)°, V = 2573.1 (5) Å<sup>3</sup>, and  $\rho$ (calcd) = 1.531 g cm<sup>-3</sup> for mol wt 592.90 and Z = 4. Intensity data were collected by the  $\theta$ -2 $\theta$ scan technique on a Syntex P21 automated four-circle diffractometer and were corrected for absorption via an empirical method based upon a series of  $\psi$  scans ( $\mu$  47.3 cm<sup>-1</sup>). The structure was solved via Patterson and difference-Fourier methods; full-matrix least-squares refinement (Ta, Cl, P, and C anisotropic; H isotropic) has led to the final discrepancy indices  $R_F = 4.1\%$  and  $R_{wF} = 3.5\%$  for those 3140 reflections with  $4^{\circ} < 2\theta < 45^{\circ}$  (Mo K $\alpha$  radiation) and  $|F_{\circ}| > \sigma(|F_{\circ}|)$ . All atoms other than the hydrogen atoms of the  $\eta^5$ -C<sub>5</sub>Me<sub>5</sub> ligand were located directly; the molecular geometry is shown in Figure 2.

The central tantalum (5+) atom is surrounded in a "fourlegged piano stool" arrangement by the  $n^5$ -C<sub>5</sub>Me<sub>5</sub> ligand and the four monodentate ligands. The tantalum-benzylidyne linkage (Ta-C<sup>1</sup>) is 1.849 (8) Å in length—i.e., some 0.40 Å shorter than a normal Ta-C(sp<sup>3</sup>) single bond and  $\sim 0.18$  Å shorter than the tantalum-neopentylidene linkage of 2.030 (6) Å found in  $Ta(\eta^5-C_5H_5)_2(CHCMe_3)Cl.^{14}$  Distortion of the Ta- $C^1$ - $C^2$  angle (171.8 (6)°) from 180° presumably results from repulsive *inter* molecular interactions. Nevertheless, it seems appropriate to regard the tantalum-benzylidyne linkage as essentially a triple bond. The  $C^1-C^2$  bond length of 1.467 (10) Å is quite in keeping with its being an unperturbed  $C(sp)-C(sp^2)$  single bond.

Ta-C(cyclopentadienyl) bonding distances are (cyclically) 2.417 (8), 2.460 (8), 2.518 (9), 2.455 (9), and 2.397 (9) Å; the average value is 2.449 Å. The four monodentate ligands define a remarkable regular geometric pattern around the tantalum



Figure 2. Molecular geometry of the  $Ta(\eta^5-C_5Me_5)(CPh)(PMe_3)_2Cl$ molecule (ORTEP diagram; 50% probability contours for all atoms except hydrogen atoms).

atom. The two "pseudo-trans" angles, C<sup>1</sup>-Ta-Cl and P<sup>1</sup>- $Ta-P^2$ , are equivalent with values of 125.54 (22) and 125.41 (7)°, respectively. The four cis angles are  $C^{1}-Ta-P^{1} = 80.29$ (22),  $P^1$ -Ta-Cl = 76.66 (7), Cl-Ta-P<sup>2</sup> = 75.76 (7), and  $P^2$ -Ta-C<sup>1</sup> = 78.96 (22)°. The tantalum-phosphorus bond lengths are Ta-P<sup>1</sup> = 2.567 (2) and Ta-P<sup>2</sup> = 2.565 (2) Å, while the tantalum-chlorine distance is 2.548 (2) Å. All other distances and angles in the structure are normal.

Acknowledgments. This work was generously supported by the National Science Foundation (Grant NO. CHE76-07410 to R. R. Schrock and CHE77-04981 to M. R. Churchill). We also thank the Francis N. Bitter National Magnet Laboratory for the use of their high field <sup>1</sup>H and <sup>13</sup>C NMR facilities.

#### **References and Notes**

- Part 9: R. R. Schrock, L. W. Messerle, C. D. Wood, and L. J. Guggenberger, J. Am. Chem. Soc., 100, 3793 (1978).
  Part 8: R. R. Schrock and J. D. Fellmann, J. Am. Chem. Soc., 100, 3359
- (1978).
- (3) (a) Part 7: R. R. Schrock and P. R. Sharp, J. Am. Chem. Soc., 100, 2389
- (1978); (b) R. R. Schrock, *J. Am. Chem. Soc.*, **97**, 6577 (1975).
  (4) One referee vehemently objected to the use of the alkylidyne nomenclature instead of Fischer's<sup>5</sup> carbyne nomenclature. ''Alkylidyne'' is not only logical (alkyl → alkylidene → alkylidyne) but has been used elsewhere in organic and organometallic chemistry for at least 10 years. (See, for example, alkylidynetricobalt nonacarbonyl cluster chemistry.<sup>6</sup>)
- (a) E. O. Fischer and U. Schubert, J. Organomet. Chem., 100, 59 (1975). (b) E. O. Fischer, Adv. Organomet. Chem., 14, 1 (1976). (c) E. O. Fischer, T. L. Lindner, and F. R. Kreissl, J. Organomet. Chem., 112, C27 (1976). (d) The largest class of alkyllidyne complexes consists of examples of the type X(CO)<sub>5</sub>M≡CR (X = Cl, Br, I; M = Cr, Mo, W; R = C<sub>6</sub>H<sub>5</sub>, CH<sub>3</sub>), most of which are barely stable at room temperature.<sup>5a,b</sup> Other examples, e.g., <sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(CO)<sub>2</sub>W<sup>2</sup>CR,<sup>5c</sup> are apparently more stable.
- (6) D. Seyferth, Adv. Organomet. Chem., 14, 97 (1976).
- (7) S. J. McLain, C. D. Wood, and R. R. Schrock, J. Am. Chem. Soc., 99, 3519
- (8) (a) <sup>1</sup>H NMR ( $\tau$ , CD<sub>2</sub>Cl<sub>2</sub>); 4.01 (d, 1,  $J_{HP} = 1.6$  Hz, ==CHCMe<sub>3</sub>), 4.15 (d, 5,
- (a) 'H NMH ( $\tau$ , CD<sub>2</sub>Cl<sub>2</sub>): 4.01 (d, 1,  $J_{HP} = 1.6$  Hz,  $= CHCMe_3$ ), 4.15 (d, 5,  $J_{HP} = 2.9$  Hz,  $\eta^5-C_5H_5$ ), 8.40 (d, 9,  $J_{HP} = 8.6$  Hz, PMe<sub>3</sub>), 8.87 (s, 9, =CHCMe<sub>9</sub>). (b) 'H NMR ( $\tau$ , C<sub>6</sub>D<sub>6</sub>): 4.67 (t, 5,  $J_{HP} \approx 2.5$  Hz, Cp), 8.65 (1: 2(br):1, t, 9,  $J_{HP} \approx 3.5$  Hz, PMe<sub>3</sub>), 8.76 (s, 9, CMe<sub>3</sub>). 'H NMR ( $\tau$ , C<sub>6</sub>D<sub>6</sub>): 4.08 (s, 1,  $= CHCMe_3$ ), 4.27 (s, 5, Cp), 7.90 (d, 1,  $CH_AH_BCMe_3$ , J = 13 Hz), 8.90 (s, 9,  $= CHCMe_3$ ), 8.95 (s, 9,  $CH_2CMe_3$ ), 9.27 (d, 1, CH<sub>A</sub>H<sub>6</sub>CMe<sub>3</sub>, J = 13 Hz). '<sup>3</sup>C NMR (gated decoupled, parts per million, C<sub>6</sub>D<sub>6</sub>): 240 (d,  $= CHCMe_3$ ,  $J_{CH} = 81$  Hz), 104 (d, Cp,  $J_{CH} = 177$  Hz), 79.1 (dd, CH<sub>4</sub>H<sub>6</sub>CMe<sub>3</sub>,  $J \approx 100$ , 110 Hz), 47.3 (s,  $= CHCMe_3$ ), 34.8 (s, CH<sub>2</sub>CMe<sub>3</sub>), 34.6 (q,  $= CHCMe_3$ ,  $J_{CH} = 125$  Hz), 33.4 (q, CH<sub>2</sub>CMe<sub>3</sub>,  $J_{CH} = 125$  Hz). 125 Hz).
- (10) Brown TaCp(CH<sub>2</sub>Ph)<sub>3</sub>Cl can be prepared from Ta(CH<sub>2</sub>Ph)<sub>3</sub>Cl<sub>2</sub> (R. R. Schrock, J. Organomet. Chem., **122**, 209 (1976)) and NaCp in THF at 78 °C, followed by warming to room temperature, removal of solvent, and recrystallization from benzene-pentane. <sup>1</sup>H NMR (r, C<sub>6</sub>D<sub>6</sub>): 4.65 (s, 5, Cp), 7.13
- (11)  ${}^{13}C[^{1}H]$  NMR spectrum of 4 (parts per million from Me<sub>2</sub>Si in C<sub>6</sub>D<sub>6</sub>): 334 (t, C<sup> $\alpha$ </sup>, J<sub>CP</sub> = 21 ± 1 Hz), 153.2 (C<sub>lpso</sub>), 128.5 and 127.6 (C<sub>0</sub> and C<sub>m</sub>), 122.7 (C<sub>p</sub>), 98.7 (s, C<sub>p</sub>), 16.9 (t, PMe<sub>3</sub>, J<sub>CP</sub> = 13 ± 1 Hz). (12) (a) Ta( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)(CH<sub>2</sub>CMe<sub>3</sub>)(CHCMe<sub>3</sub>)CI is formed when Ta( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)-

 $\begin{array}{l} (CH_2CMe_3)Cl_3 \text{ is treated with } 2 \text{ mol of } LiCH_2CMe_3 \text{ in pentane at } -78 \ ^\circ\text{C:} \\ \delta(CHCMe_3) 232 (J_{CH_1} = 76 \pm 2 \text{ Hz}), \tau (CHCMe_3) 6.25, \tau (CH_AH_BCMe_3) 9.08, \\ \tau (CH_AH_BCMe_3) 9.25 (J_{H_1H_B} = 14 \text{ Hz}). (b) \text{ Ta}(\eta^5\text{-}C_5Me_5)(CHPh)(CH_2Ph)Cl \\ \text{ is formed when Ta}(CH_2Ph)_3Cl_2 \text{ is treated with } LiC_5Me_5 \text{ in THF for 1 day:} \\ \delta (CHPh) 222 (J_{CH} = 85 \pm 2 \text{ Hz}), \tau (CHPh) 6.71, \tau (CH_AH_BPh) 7.66, \tau \\ (CH_AH_BPh) 7.82 (J_{H_2H_B} = 11 \text{ Hz}). \text{ Ta}(\eta^5\text{-}C_5Me_4\text{El})(CHPh)(CH_2Ph)Cl \text{ forms similarly and has been analyzed. Calcd for TaC_{25}H_{30}Cl: C, 54.91; H, 5.52; \\ \text{Cl, 6.48. Found: C, 54.30; H, 5.40; Cl, 6.37. \end{array}$ 

- (13) (a) W. Mowat and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1120 (1973);
  (b) F. Huq, W. Mowat, A. C. Skapski, and G. Wilkinson, Chem. Commun., 1477 (1971).
- (14) (a) M. R. Churchill, F. J. Hollander, and R. R. Schrock, J. Am. Chem. Soc., 100, 647 (1978); (b) M. R. Churchill and F. J. Hollander, Inorg. Chem., 17, 1957 (1978).
- (15) (a) National Science Foundation Predoctoral Fellow, 1975–1978; (b) Dow Chemical Central Research Fellow, 1976–1977; (c) Alfred P. Sloan Fellow, 1976–1978.

S. J. McLain,<sup>15a</sup> C. D. Wood L. W. Messerle,<sup>15b</sup> R. R. Schrock\*<sup>15c</sup>

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Frederick J. Hollander, Wiley J. Youngs Melvyn Rowen Churchill\*

Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214 Received January 20, 1978

# Multiple Metal-Carbon Bonds. 11.<sup>1</sup> Bisneopentylidene Complexes of Niobium and Tantalum

### Sir:

In a recent communication<sup>1</sup> we showed that alkylidyne complexes can be prepared from alkyl/alkylidene complexes by "accelerating" (with PMe<sub>3</sub>) the nondegererate  $\alpha$ -hydrogen atom transfer from the alkylidene  $\alpha$ -carbon atom to the alkyl  $\alpha$ -carbon atom. An interesting question is what happens if  $\alpha$ -hydrogen abstraction occurs in a di- or trialkyl-alkylidene complex? Either an alkyl/alkylidyne or a bisalkylidene complex in principle could be formed. *Dimeric* alkyl-"alkylidyne" complexes are known.<sup>1,2</sup> We now want to show that bisneopentylidene complexes (of Nb and Ta) can also be the ultimate products of accelerated  $\alpha$ -hydrogen abstraction reactions in di- or trineopentyl-neopentylidene complexes. They can also be prepared from alkylidyne-chloride complexes by substituting the chloride with the alkyl.<sup>3a</sup>

Ta(CH<sub>2</sub>CMe<sub>3</sub>)<sub>3</sub>(CHCMe<sub>3</sub>)<sup>3b,c</sup> is relatively stable thermally as a solid or in pentane or benzene (for weeks at 25 °C) probably because (i) intermolecular decomposition pathways are slow and (ii) the first observed change is a degenerate intramolecular scrambling of  $\alpha$ -hydrogen atoms ( $\Delta G^{\ddagger} \approx 28$  kcal mol<sup>-1</sup>; no neopentane evolves during the scrambling process<sup>3b</sup>). In the presence of at least 2 mol of L (L = PMe<sub>3</sub> or PMe<sub>2</sub>Ph), however, neopentane (1 mol) does evolve, comparatively rapidly when L = PMe<sub>3</sub> (2 h at 25 °C) but more slowly (2 weeks at 25 °C) when L = PMe<sub>2</sub>Ph. We therefore propose that a five-coordinate intermediate is formed (eq 1) in which  $\alpha$ -



" $(Me_3CCH_2)M(CHCMe_3)_2L$ "  $\xrightarrow{L}$   $M(CHCMe_3)_2(CH_2CMe_3)L_2$ 

hydrogen atom abstraction is easier<sup>3b</sup> and that the final product (in essentially quantitative yield) is a bisneopentylidene complex, **1a**. It is not necessarily true that the immediate precursor is also a bisneopentylidene complex (see later), although this is what we have assumed for the present. The evolution of neopentane from Nb(CH<sub>2</sub>CMe<sub>3</sub>)<sub>3</sub>(CHCMe<sub>3</sub>)<sup>3b</sup> is also accelerated dramatically on adding L and the analogous products, **1b**, can be isolated in ~75% yield. All complexes are orange to red, crystalline, sensitive to air and moisture, and moderately soluble in pentane. A molecular weight determination for Ta(CHCMe<sub>3</sub>)<sub>2</sub>(CH<sub>2</sub>CMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>2</sub> in cyclohexane (cryoscopically) showed it to be a monomer (mol wt found, 540  $\pm$  40; two runs at 0.006 and 0.011 M). The presence of two neopentylidene ligands is suggested by the instantaneous reaction of **1** with acetone to give 2 mol of disobutylene.<sup>4</sup>

The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **1** show that (i) it has a plane of symmetry and (ii) the neopentylidene ligands are nonequivalent on the NMR time scales (60-270 MHz) at 30 °C. For example, the <sup>1</sup>H NMR spectrum of Ta-(CHCMe<sub>3</sub>)<sub>2</sub>(CH<sub>2</sub>CMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>2</sub> at 270 MHz shows three CMe<sub>3</sub> singlets, a PMe<sub>3</sub> triplet ( $J_{HP} = 2.4 \text{ Hz}$ ), a neopentyl  $H_{\alpha}$ triplet at  $\tau$  9.39 ( $J_{\rm HP}$  = 19 Hz), and two neopentylidene H<sub> $\alpha$ </sub> resonances at  $\tau$  7.92 and 3.07 ( $J_{\rm HP} \lesssim$  2). On broad-banddecoupling <sup>31</sup>P the neopentyl  $H_{\alpha}$  triplet resonance becomes a singlet and the broadened neopentylidene  $H_{\alpha}$  resonances sharpen. In the gated decoupled <sup>13</sup>C spectrum we find two neopentylidene  $C_{\alpha}$  doublet resonances at  $\tau$  274 and 246 with low CH coupling constants ( $J_{CH} = 95$  and 85 Hz, respectively,  $J_{\rm CP} \lesssim 5$  Hz) characteristic of neopentylidene ligands in crowded environments.<sup>5</sup> When  $L = PMe_2Ph$  (and M = Ta) the gated decoupled <sup>13</sup>C NMR spectrum establishes that the phosphine's methyl groups are diastereotopic; two P-Me quartets are found (at  $\delta$  22.5 and 19.2;  $J_{CH}$  = 128 Hz) but only one type of phenyl ring. In the four most likely structures



(A-D) the neopentylidene ligands must not freely rotate about the M = Caxis.<sup>6</sup> We favor A, based only on the relatively large -CH<sub>2</sub>-phosphorus coupling constant (19 Hz) vs. the relatively small = CH-phosphorus coupling constant ( $\lesssim 5$  Hz).

Thermally unstable  $Ta(CH_2CMe_3)_4Cl$  can be prepared by adding HCl to  $Ta(CH_2CMe_3)_3(CHCMe_3)$  at -78 °C in pentane.<sup>3b</sup> We added PMe<sub>3</sub> in an attempt to trap the proposed decomposition product,  $M(CH_2CMe_3)_2(CHCMe_3)Cl$ ;<sup>8</sup> the high yield product is, instead,  $Ta(CHCMe_3)_2(Cl)(PMe_3)_2$  (**2**<sub>a</sub>, eq 2). Analogous procedures give thermally stable products

$$M(CH_2CMe_3)_4C$$



where  $L = PMe_2Ph$  or M = Nb. Apparently even the larger, less basic  $PMe_2Ph$  can coordinate to incipient  $M(CH_2CMe_3)_2(CHCMe_3)Cl$  to give (most likely) thermally